Women

Breast cancer detection by analyzing the volatile organic compound (VOC) signature in human urine

[ad_1]

  • US Preventive Services Task Force. Screening for breast cancer: US Preventive Services Task Force recommendation statement. Ann. Intern. Med. 151(10), 716–236 (2009).

    Article 

    Google Scholar
     

  • Nelson, H. D. et al. Screening for breast cancer: an update for the US Preventive Services Task Force. Ann. Intern. Med. 151(10), 727–737 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Center for Disease Control (CDC). Health, United States, 2019, Table 33.

  • Feldstein, A. C. et al. Patient barriers to mammography identified during a reminder program. J. Womens Health 20(3), 421–428 (2011).

    Article 

    Google Scholar
     

  • Jemal, Ahmedin, Ward, Elizabeth & Thun, Michael J. Recent trends in breast cancer incidence rates by age and tumor characteristics among US women. Breast Cancer Res. 9(3), 1–6 (2007).

    Article 

    Google Scholar
     

  • Broeders, M. et al. The impact of mammographic screening on breast cancer mortality in Europe: A review of observational studies. J. Med. Screen. 19(1 suppl), 14–25 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Blumen, H., Fitch, K. & Polkus, V. Comparison of treatment costs for breast cancer, by tumor stage and type of service. Am. Health Drug Benefits 9(1), 23 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barlow, W. E. et al. Accuracy of screening mammography interpretation by characteristics of radiologists. J. Natl Cancer Inst. 96(24), 1840–1850 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Desreux, J. A. Breast cancer screening in young women. Eur. J. Obstetr. Gynecol. Reprod. Biol. 230, 208–211 (2018).

    Article 

    Google Scholar
     

  • Siu, A. L. Screening for breast cancer: US Preventive Services Task Force recommendation statement. Ann. Intern. Med. 164(4), 279–296 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Sechopoulos, I., Suryanarayanan, S., Vedantham, S., D’Orsi, C. J. & Karellas, A. Radiation dose to organs and tissues from mammography: Monte Carlo and phantom study. Radiology 246(2), 434–443 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Gøtzsche, P. C. The debate on breast cancer screening with mammography is important. J. Am. Coll. Radiol. 1(1), 8–14 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • World Health Organization. WHO Position Paper on Mammography Screening (WHO, 2014).


    Google Scholar
     

  • World Health Organization. Disease Burden and Mortality Estimates (WHO, 2018).


    Google Scholar
     

  • Apantaku, L. M. Breast cancer diagnosis and screening. Am. Fam. Phys. 62(3), 596–602 (2000).

    CAS 

    Google Scholar
     

  • Podgornova, Y. A. & Sadykov, S. S. Detection of malignant breast tumors on the background of fibrocystic breast disease. In CEUR Workshop Proceedings, Vol. 2210, 177 (2018).

  • Malherbe, K. & Fatima, S. Fibrocystic Breast Disease (2019).

  • Warner, E. et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA 292(11), 1317–1325 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mango, V. L., Goel, A., Mema, E., Kwak, E. & Ha, R. Breast MRI screening for averagerisk women: A Monte Carlo simulation costbenefit analysis. J. Magn. Reson. Imaging 49(7), e216–e221 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Persaud, Krishna & Dodd, George. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299(5881), 352–355 (1982).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Asimakopoulos, A. D. et al. Prostate cancer diagnosis through electronic nose in the urine headspace setting: A pilot study. Prostate Cancer Prostatic Dis. 17(2), 206–211 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guerrero-Flores, H. et al. A non-invasive tool for detecting cervical cancer odor by trainedscent dogs. BMC Cancer 17(1), 79 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buszewski, B. et al. Identification of volatile lung cancer markers by gas chromatography-mass spectrometry: Comparison with discrimination by canines. Anal. Bioanal. Chem. 404(1), 141–146 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Blatt, R., Bonarini, A. & Matteuci, M. Pattern Classification Techniques for Lung Cancer Diagnosis by an Electronic Nose 397–423 (Springer, 2010).


    Google Scholar
     

  • Phillips, M. et al. Rapid point-of-care breath test for biomarkers of breast cancer and abnormal mammograms. PLoS ONE 9(3), e90226 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Burton, C. & Ma, Y. Current trends in cancer biomarker discovery using urinary metabolomics: Achievements and new challenges. Curr. Med. Chem. 24, 5–28 (2017).


    Google Scholar
     

  • Guo, C. et al. Discriminating patients with early-stage breast cancer from benign lesions by detection of oxidative DNA damage biomarker in urine. Oncotarget 8(32), 53100 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Horvath, G., Järverud, G., Järverud, S. & Horváth, I. Human ovarian carcinomas detected by specific odor. Integr. Cancer Ther. 7(2), 76–80 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Lavra, L. et al. Investigation of VOCs associated with different characteristics of breast cancer cells. Sci. Rep. 5(1), 13246 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • van Keulen, K. E., Jansen, M. E., Schrauwen, R. W., Kolkman, J. J. & Siersema, P. D. Volatile organic compounds in breath can serve as a noninvasive diagnostic biomarker for the detection of advanced adenomas and colorectal cancer. Aliment. Pharmacol. Therap. 51(3), 334–346 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Antoce, A. O. & Namolosanu, I. O. A. N. Rapid and precise discrimination of wines by means of an electronic nose based on gas-chromatography. Rev. Chim. 62(6), 593–595 (2011).

    CAS 

    Google Scholar
     

  • Kishimoto, N. & Kashiwagi, A. Evaluation of filtration on volatile compounds in virgin olive oils using an electronic nose. In 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), 1–3 (IEEE, 2019).

  • Dent, A., Sutedja, T. & Zimmerman, P. Exhaled breath analysis for lung cancer. J. Thorac. Dis. 63(2), 164–168 (2013).


    Google Scholar
     

  • Peng, G. et al. Detection of lung, breast, colorectal and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 103(4), 542–551 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peled, N. et al. Non-invasive breath analysis of pulmonary nodules. J. Thorac. Oncol. 7(10), 1528–1533 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Di Natale, C. et al. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens. Bioelectron. 18(10), 1209–1218 (2003).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • D’Amico, A. et al. An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 68(2), 170–176 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Huang, Y., Li, Y., Luo, Z. & Duan, Y. Investigation of biomarkers for discriminating breast cancer cell lines from normal mammary cell lines based on VOCs analysis and metabolomics. R. Soc. Chem. Adv. 6(48), 41816–41824 (2016).

    CAS 

    Google Scholar
     

  • Wang, C. et al. Volatile organic metabolites identify patients with breast cancer, cyclomastopathy, and mammary gland fibroma. Sci. Rep. 4(1), 5383 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Silva, C., Perestrelo, R., Silva, P., Tomás, H. & Câmara, J. Volatile metabolomic signature of human breast cancer cell lines. Sci. Rep. 7, 43969 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, J. et al. Investigation of potential breath biomarkers for the early diagnosis of breast cancer using gas chromatography-mass spectrometry. Clin. Chim. Acta 436, 59–67 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vignoli, A. et al. Precision oncology via NMR-based metabolomics: A review on breast cancer. Int. J. Mol. Sci. 22(9), 4687 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weber, C. et al. Evaluation of a gas sensor array and pattern recognition for the identification of bladder cancer from urine headspace. Analyst 136(2), 359–364 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roine, A. et al. Detection of smell print differences between nonmalignant and malignant prostate cells with an electronic nose. Future Oncol. 8(9), 1157–1165 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Watson, J. The tin oxide gas sensor and its applications. Sens. Actuators 5(1), 29–42 (1984).

    CAS 
    Article 

    Google Scholar
     

  • Mazzone, P. et al. Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax 62(7), 565–568 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Machado, R. et al. Detection of lung cancer by sensor array analyses of exhaled breath. Am. J. Respir. Crit. Care Med. 171(11), 1286–1291 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dragonieri, S. et al. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 64(2), 166–170 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • O’Donovan, P. et al. Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science 309, 1871–1874 (2005).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Brooks, S., Moore, D., Marzouk, E., Glenn, F. & Hallock, R. Canine olfaction and electronic nose detection of volatile organic compounds in the detection of cancer: A review. Cancer Investig. 33(9), 411–419 (2015).

    Article 
    CAS 

    Google Scholar
     

  • List of MAK and BAT Values 2017: Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area. Report 53, Vol. 17, 1st ed, 14–36 (WILEYVCH Verlag GmbH and Co. KGaA, 2017).

  • ”The PubChem Project”. Pubchem.ncbi.nlm.nih.gov. https://pubchem.ncbi.nlm.nih.gov (2018) (Accessed 10 March 2018).

  • ”Human Metabolome Database”, HMDB. http://www.hmdb.ca (2018) (Accessed 30 May 2018).

  • Mochalski, P. & Unterkofler, K. Quantification of selected volatile organic compounds in human urine by gas chromatography selective reagent ionization time of flight mass spectrometry (GC-SRI-TOF-MS) coupled with head-space solid-phase microextraction (HS-SPME). Analyst 141(15), 4796–4803 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brsan, N. & Weimar, U. Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Condens. Matter 15(20), 813–839 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Henriksen, T., Hillestrom, P., Poulsen, H. & Weimann, A. Automated method for the direct analysis of 8-oxo-guanosine and 8-oxo-2’-deoxyguanosine in human urine using ultraperformance liquid chromatography and tandem mass spectrometry. Free Radic. Biol. Med. 47(5), 629–635 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smith, S. et al. A comparative study of the analysis of human urine headspace using gas chromatography–mass spectrometry. J. Breath Res. 2, 037022 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Allen, B. et al. Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism. Redox Biol. 2, 963–970 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button