Health

Correlation between sedentary activity, physical activity and bone mineral density and fat in America: National Health and Nutrition Examination Survey, 2011–2018

[ad_1]

  • Kanis, J. A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos. Int. 4, 368–381 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reid, I. R. & Billington, E. O. Drug therapy for osteoporosis in older adults. Lancet (London, England) 399, 1080–1092 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewiecki, E. M. et al. Healthcare policy changes in osteoporosis can improve outcomes and reduce costs in the United States. JBMR plus 3, e10192 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amin, S. & Khosla, S. Sex- and age-related differences in bone microarchitecture in men relative to women assessed by high-resolution peripheral quantitative computed tomography. J. Osteoporos. 2012, 129760 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Law, M. R. & Hackshaw, A. K. A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of a major effect. BMJ (Clin. Res. ed) 315, 841–846 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Fabiani, R., Naldini, G. & Chiavarini, M. Dietary patterns in relation to low bone mineral density and fracture risk: a systematic review and meta-analysis. Adv. Nutr. (Bethesda, Md) 10, 219–236 (2019).

    Article 

    Google Scholar
     

  • Zhang, S. et al. Effect of exercise on bone mineral density among patients with osteoporosis and osteopenia: A systematic review and network meta-analysis. J. Clin. Nurs. 31, 2100–2111 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, S. M. et al. Effects of artificial gravity during bed rest on bone metabolism in humans. J. Appl. Physiol. (Bethesda, Md: 1985) 107, 47–53 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Morey-Holton, E. R. & Globus, R. K. Hindlimb unloading of growing rats: A model for predicting skeletal changes during space flight. Bone 22, 83s–88s (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. A., Lee, Y., Lee, J. H. & Seo, J. H. Effects of physical activity on bone mineral density in older adults: Korea National Health and Nutrition Examination Survey, 2008–2011. Arch. Osteoporos. 14, 103 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brooke-Wavell, K. et al. Strong, steady and straight: UK consensus statement on physical activity and exercise for osteoporosis. Br. J. Sports Med. 56, 837–846 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Pinheiro, M. B. et al. Evidence on physical activity and osteoporosis prevention for people aged 65+ years: a systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. Int. J. Behav. Nutr. Phys. Activity 17, 150 (2020).

    Article 

    Google Scholar
     

  • Pelegrini, A. et al. Association between sedentary behavior and bone mass in adolescents. Osteoporos. Int. 31, 1733–1740 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vicente-Rodríguez, G. et al. Extracurricular physical activity participation modifies the association between high TV watching and low bone mass. Bone 45, 925–930 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Chastin, S. F., Mandrichenko, O., Helbostadt, J. L. & Skelton, D. A. Associations between objectively-measured sedentary behaviour and physical activity with bone mineral density in adults and older adults, the NHANES study. Bone 64, 254–262 (2014).

    Article 
    CAS 

    Google Scholar
     

  • McMichan, L. et al. Sedentary behaviour and bone health in older adults: A systematic review. Osteoporos. Int. 32, 1487–1497 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashwell, M., Mayhew, L., Richardson, J. & Rickayzen, B. Waist-to-height ratio is more predictive of years of life lost than body mass index. PLoS ONE 9, e103483 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, W. S. Body fatness charts based on BMI and waist circumference. Obesity (Silver Spring, Md) 24, 245–249 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Gómez-Ambrosi, J. et al. (2012) Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int. J. Obes. 36, 286–294 (2005).

    Article 

    Google Scholar
     

  • Padwal, R., Leslie, W. D., Lix, L. M. & Majumdar, S. R. Relationship among body fat percentage, body mass index, and all-cause mortality: A cohort study. Ann. Int. Med. 164, 532–541 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Brantus, J. F. & Delmas, P. D. [Osteoporosis. Epidemiology, etiology, diagnosis, prevention]. La Revue du praticien. 47, 917–22 (1997).

  • Leboime, A. et al. Osteoporosis and mortality. Jt Bone Spine 77(suppl 2), S107–S112 (2010).

    Article 

    Google Scholar
     

  • Braun, S. I., Kim, Y., Jetton, A. E., Kang, M. & Morgan, D. W. Prediction of bone mineral density and content from measures of physical activity and sedentary behavior in younger and older females. Prev. Med. Rep. 2, 300–305 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hind, K., Hayes, L., Basterfield, L., Pearce, M. S. & Birrell, F. Objectively-measured sedentary time, habitual physical activity and bone strength in adults aged 62 years: the Newcastle Thousand Families Study. J. Public Health (Oxford, England) 42, 325–332 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gobbo, L. A., Júdice, P. B., Hetherington-Rauth, M., Sardinha, L. B. & Dos Santos, V. R. Sedentary patterns are associated with bone mineral density and physical function in older adults: cross-sectional and prospective data. Int. J. Environ. Res. Public Health 17, 8198 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabel, L., McKay, H. A., Nettlefold, L., Race, D. & Macdonald, H. M. Bone architecture and strength in the growing skeleton: the role of sedentary time. Med. Sci. Sports Exerc. 47, 363–372 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ng, C. A. et al. Associations between physical activity and bone structure in older adults: Does the use of self-reported versus objective assessments of physical activity influence the relationship?. Osteoporos. Int. 31, 493–503 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain, R. K. & Vokes, T. Physical activity as measured by accelerometer in NHANES 2005–2006 is associated with better bone density and trabecular bone score in older adults. Arch. Osteoporos. 14, 29 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Riggs, B. L. et al. Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Investig 70, 716–723 (1982).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. et al. Changes in bone turnover markers during 14-day 6 degrees head-down bed rest. J. Bone Miner. Metab. 21, 311–315 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zwart, S. R. et al. Nutritional status assessment before, during, and after long-duration head-down bed rest. Aviat. Space Environ. Med. 80, A15-22 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frost, H. M. Wolff’s Law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod. 64, 175–188 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Klein-Nulend, J., Bacabac, R. G. & Bakker, A. D. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur. Cell. Mater. 24, 278–291 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lanyon, L. E. Using functional loading to influence bone mass and architecture: objectives, mechanisms, and relationship with estrogen of the mechanically adaptive process in bone. Bone 18, 37s–43s (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, K. C. & Lanyon, L. E. Mechanical loading influences bone mass through estrogen receptor alpha. Exerc. Sport Sci. Rev. 32, 64–68 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Völgyi, E. et al. Assessing body composition with DXA and bioimpedance: effects of obesity, physical activity, and age. Obesity (Silver Spring, Md) 16, 700–705 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Min, K. B. & Min, J. Y. Android and gynoid fat percentages and serum lipid levels in United States adults. Clin. Endocrinol. 82, 377–387 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Maher, C. A., Mire, E., Harrington, D. M., Staiano, A. E. & Katzmarzyk, P. T. The independent and combined associations of physical activity and sedentary behavior with obesity in adults: NHANES 2003–06. Obesity (Silver Spring, Md) 21, E730–E737 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • [ad_2]

    Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button