Women

Concomitant analyses of intratumoral microbiota and genomic features reveal distinct racial differences in breast cancer

[ad_1]

  • Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2021. Cancer J. Clin. 71, 7–33 (2021).

    Article 

    Google Scholar
     

  • Kim, G. et al. The contribution of race to breast tumor microenvironment composition and disease progression. Front. Oncol. 10, https://doi.org/10.3389/fonc.2020.01022 (2020).

  • Lin, C.-H. et al. Contrasting epidemiology and clinicopathology of female breast cancer in Asians vs the US population. J. Natl Cancer Inst. 111, 1298–1306 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Morey, B. N. et al. Higher breast cancer risk among immigrant asian american women than among US-born Asian American women. Prev. Chronic Dis. 16, E20–E20 (2019).

    Article 

    Google Scholar
     

  • Yap, Y.-S. et al. Insights into breast cancer in the east vs the west: a review. JAMA Oncol. 5, 1489–1496 (2019).

    Article 

    Google Scholar
     

  • Danforth, D. N. Jr Disparities in breast cancer outcomes between Caucasian and African American women: a model for describing the relationship of biological and nonbiological factors. Breast Cancer Res. 15, 208 (2013).

    Article 

    Google Scholar
     

  • Siddharth, S. & Sharma, D. Racial disparity and triple-negative breast cancer in African-American women: A multifaceted affair between obesity, biology, and socioeconomic determinants. Cancers (Basel) 10, https://doi.org/10.3390/cancers10120514 (2018).

  • Shavers, V. L. & Brown, M. L. Racial and ethnic disparities in the receipt of cancer treatment. J. Natl Cancer Inst. 94, 334–357 (2002).

    Article 

    Google Scholar
     

  • Haynes-Maslow, L. et al. African American women’s perceptions of cancer clinical trials. Cancer Med. 3, 1430–1439 (2014).

    Article 

    Google Scholar
     

  • Newman, L. A. et al. Meta-analysis of survival in African American and white American patients with breast cancer: ethnicity compared with socioeconomic status. J. Clin. Oncol. 24, 1342–1349 (2006).

    Article 

    Google Scholar
     

  • Tammemagi, C. M., Nerenz, D., Neslund-Dudas, C., Feldkamp, C. & Nathanson, D. Comorbidity and survival disparities among black and white patients with breast cancer. JAMA 294, 1765–1772 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Hershman, D. et al. Ethnic neutropenia and treatment delay in African American women undergoing chemotherapy for early-stage breast cancer. J. Natl Cancer Inst. 95, 1545–1548 (2003).

    Article 

    Google Scholar
     

  • Friebel-Klingner, T. M. et al. Risk factors for breast cancer subtypes among Black women undergoing screening mammography. Breast Cancer Res. Treat. 189, 827–835 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Akinyemiju, T. F., Pisu, M., Waterbor, J. W. & Altekruse, S. F. Socioeconomic status and incidence of breast cancer by hormone receptor subtype. Springerplus 4, 508 (2015).

    Article 

    Google Scholar
     

  • Lund, M. J. et al. Race and triple negative threats to breast cancer survival: a population-based study in Atlanta, GA. Breast Cancer Res. Treat. 113, 357–370 (2009).

    Article 

    Google Scholar
     

  • Carey, L. A. et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295, 2492–2502 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Keenan, T. et al. Comparison of the genomic landscape between primary breast cancer in African American versus white women and the association of racial differences with tumor recurrence. J. Clin. Oncol. 33, 3621–3627 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Dietze, E. C., Sistrunk, C., Miranda-Carboni, G., O’Regan, R. & Seewaldt, V. L. Triple-negative breast cancer in African-American women: disparities versus biology. Nat. Rev. Cancer 15, 248–254 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Walsh, S. M., Zabor, E. C., Stempel, M., Morrow, M. & Gemignani, M. L. Does race predict survival for women with invasive breast cancer. Cancer 125, 3139–3146 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Deshmukh, S. K. et al. Resistin and interleukin-6 exhibit racially-disparate expression in breast cancer patients, display molecular association and promote growth and aggressiveness of tumor cells through STAT3 activation. Oncotarget 6, 11231–11241 (2015).

    Article 

    Google Scholar
     

  • Govan, V. A. et al. Ethnic differences in allelic distribution of IFN-g in South African women but no link with cervical cancer. J. Carcinog. 2, 3 (2003).

    Article 

    Google Scholar
     

  • Siddharth, S. et al. Concomitant activation of GLI1 and Notch1 contributes to racial disparity of human triple negative breast cancer progression. Elife 10, https://doi.org/10.7554/eLife.70729 (2021).

  • Hoskins, K. F., Danciu, O. C., Ko, N. Y. & Calip, G. S. Association of race/ethnicity and the 21-gene recurrence score with breast cancer-specific mortality among US women. JAMA Oncol. 7, 370–378 (2021).

    Article 

    Google Scholar
     

  • Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sári, Z. et al. Indolepropionic acid, a metabolite of the microbiome, has cytostatic properties in breast cancer by activating AHR and PXR receptors and inducing oxidative stress. Cancers (Basel) 12, https://doi.org/10.3390/cancers12092411 (2020).

  • Ravnik, Z., Muthiah, I. & Dhanaraj, P. Computational studies on bacterial secondary metabolites against breast cancer. J. Biomol. Struct. Dyn. 39, 7056–7064 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sári, Z. et al. Indoxylsulfate, a metabolite of the microbiome, has cytostatic effects in breast cancer via activation of AHR and PXR receptors and induction of oxidative stress. Cancers (Basel) 12, https://doi.org/10.3390/cancers12102915 (2020).

  • Kovács, T. et al. Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci. Rep. 9, 1300 (2019).

    Article 

    Google Scholar
     

  • Kovács, P. et al. Lithocholic acid, a metabolite of the microbiome, increases oxidative stress in breast cancer. Cancers (Basel) 11, https://doi.org/10.3390/cancers11091255 (2019).

  • Parida, S. et al. A procarcinogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates notch and β-catenin axes. Cancer Discov. 11, 1138–1157 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Van der Merwe, M., Van Niekerk, G., Botha, A. & Engelbrecht, A. M. The onco-immunological implications of Fusobacterium nucleatum in breast cancer. Immunol. Lett. 232, 60–66 (2021).

    Article 

    Google Scholar
     

  • Terrisse, S. et al. Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment. Cell Death Differ. 28, 2778–2796 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shiao, S. L. et al. Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy. Cancer Cell 39, 1202–1213.e1206 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Baker, J. M., Al-Nakkash, L. & Herbst-Kralovetz, M. M. Estrogen-gut microbiome axis: physiological and clinical implications. Maturitas 103, 45–53 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kwa, M., Plottel, C. S., Blaser, M. J. & Adams, S. The intestinal microbiome and estrogen receptor-positive female breast cancer. J. Natl Cancer Inst. 108, djw029 (2016).


    Google Scholar
     

  • Aguilera, M., Gálvez-Ontiveros, Y. & Rivas, A. Endobolome, a new concept for determining the influence of microbiota disrupting chemicals (MDC) in relation to specific endocrine pathogenesis. Front. Microbiol. 11, https://doi.org/10.3389/fmicb.2020.578007 (2020).

  • Grieneisen, L. et al. Gut microbiome heritability is nearly universal but environmentally contingent. Science 373, 181–186 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hall, A. B., Tolonen, A. C. & Xavier, R. J. Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 18, 690–699 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Smith, A. et al. Distinct microbial communities that differ by race, stage, or breast-tumor subtype in breast tissues of non-Hispanic Black and non-Hispanic White women. Sci. Rep. 9, 11940 (2019).

    Article 

    Google Scholar
     

  • Thyagarajan, S. et al. Comparative analysis of racial differences in breast tumor microbiome. Sci. Rep. 10, 14116 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Urbaniak, C. et al. Microbiota of human breast tissue. Appl. Environ. Microbiol. 80, 3007–3014 (2014).

    Article 

    Google Scholar
     

  • Urbaniak, C. et al. The microbiota of breast tissue and its association with breast cancer. Appl. Environ. Microbiol. 82, 5039–5048 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hieken, T. J. et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci. Rep. 6, 30751 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Haabeth, O. A. W. et al. Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat. Commun. 2, 240 (2011).

    Article 

    Google Scholar
     

  • Shi, Y. et al. Integrative comparison of mRNA expression patterns in breast cancers from caucasian and Asian Americans with implications for precision medicine. Cancer Res. 77, 423–433 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bauer, K. R., Brown, M., Cress, R. D., Parise, C. A. & Caggiano, V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California Cancer Registry. Cancer 109, 1721–1728 (2007).

    Article 

    Google Scholar
     

  • Chen, C.-H. et al. Disparity in tumor immune microenvironment of breast cancer and prognostic impact: Asian versus western populations. Oncologist 25, e16–e23 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lv, F. et al. Phase II study of pseudomonas aeruginosa-mannose-sensitive hemagglutinin in combination with capecitabine for HER2-negative metastatic breast cancer pretreated with anthracycline and taxane. J. Clin. Oncol. 32, 1053–1053 (2014).

    Article 

    Google Scholar
     

  • Kisil, O. V., Efimenko, T. A. & Efremenkova, O. V. Looking back to Amycolatopsis: history of the antibiotic discovery and future prospects. Antibiotics (Basel) 10, 1254 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Matthies, C., Evers, S., Ludwig, W. & Schink, B. Anaerovorax odorimutans gen. nov., sp. nov., a putrescine-fermenting, strictly anaerobic bacterium. Int. J. Syst. Evolut. Microbiol. 50, 1591–1594 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Leveque, J. et al. Polyamines in human breast cancer and its relations to classical prognostic features: clinical implications. Anticancer Res. 19, 2275–2279 (1999).

    CAS 

    Google Scholar
     

  • Kingsnorth, A. N., Wallace, H. M., Bundred, N. J. & Dixon, J. M. Polyamines in breast cancer. Br. J. Surg. 71, 352–356 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Soda, K. The mechanisms by which polyamines accelerate tumor spread. J. Exp. Clin. Cancer Res. 30, 95 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Fang, Q., Feng, Y., Feng, P., Wang, X. & Zong, Z. Nosocomial bloodstream infection and the emerging carbapenem-resistant pathogen Ralstonia insidiosa. BMC Infect. Dis. 19, 334 (2019).

    Article 

    Google Scholar
     

  • Maqbool, I. et al. Crude cell-free extract from deinococcus radiodurans exhibit anticancer activity by inducing apoptosis in triple-negative breast cancer cells. Front. Cell Dev. Biol. 8, https://doi.org/10.3389/fcell.2020.00707 (2020).

  • Lindner, R. et al. Molecular phenotypes in triple negative breast cancer from African American patients suggest targets for therapy. PLoS ONE 8, e71915 (2013).

    Article 

    Google Scholar
     

  • Martin, D. N. et al. Differences in the tumor microenvironment between African-American and European-American breast cancer patients. PLoS ONE 4, e4531 (2009).

    Article 

    Google Scholar
     

  • Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567–574 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button