Health Care

Contrast-free ultrasound imaging for blood flow assessment of the lower limb in patients with peripheral arterial disease: a feasibility study

[ad_1]

  • Shanmugasundaram, M. et al. Peripheral arterial disease—What do we need to know?. Clin. Cardiol. 34(8), 478–482 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Patel, T. et al. Peripheral arterial disease in women: The gender effect. Cardiovasc. Revasc. Med. 21(3), 404–408 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Criqui, M. H. et al. Lower extremity peripheral artery disease: contemporary epidemiology, management gaps, and future directions: A scientific statement from the American Heart Association. Circulation 144(9), e171–e191 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Song, P. et al. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: An updated systematic review and analysis. Lancet Glob. Health 7(8), e1020–e1030 (2019).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Shammas, N. W. Epidemiology, classification, and modifiable risk factors of peripheral arterial disease. Vasc. Health Risk Manag. 3(2), 229 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Schainfeld, R. M. Management of peripheral arterial disease and intermittent claudication. J. Am. Board Fam. Pract. 14(6), 443–450 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Hiatt, W. R. Medical treatment of peripheral arterial disease and claudication. N. Engl. J. Med. 344(21), 1608–1621 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Criqui, M. H. et al. Progression of peripheral arterial disease predicts cardiovascular disease morbidity and mortality. J. Am. Coll. Cardiol. 52(21), 1736–1742 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Smolderen, K. G. et al. Advancing peripheral artery disease quality of care and outcomes through patient-reported health status assessment: A scientific statement from the American Heart Association. Circulation 146(20), e286–e297 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Chaudhry, A. P. et al. Innovative informatics approaches for peripheral artery disease: Current state and provider survey of strategies for improving guideline-based care. Mayo Clin. Proc. Innov. Qual. Outcomes 2(2), 129–136 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Dua, A. & Lee, C. J. Epidemiology of peripheral arterial disease and critical limb ischemia. Tech. Vasc. Interv. Radiol. 19(2), 91–95 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Gerhard-Herman, M. D. et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 135(12), e686–e725 (2017).

    PubMed 

    Google Scholar
     

  • Tang, G. L., Chin, J. & Kibbe, M. R. Advances in diagnostic imaging for peripheral arterial disease. Expert Rev. Cardiovasc. Ther. 8(10), 1447–1455 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Crawford, F. et al. Ankle brachial index for the diagnosis of lower limb peripheral arterial disease. Cochrane Database of Syst. Rev. https://doi.org/10.1002/14651858.CD010680.pub2 (2016).

    Article 

    Google Scholar
     

  • Arain, F. A. & Cooper Jr, L. T. Peripheral arterial disease: Diagnosis and management. Mayo Clin. Proc. 83, 944 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, E., Wattanakit, K. & Gornik, H. L. Using the ankle-brachial index to diagnose peripheral artery disease and assess cardiovascular risk. Cleve Clin. J. Med. 79(9), 651–661 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Hendriks, E. J. et al. Association of high ankle brachial index with incident cardiovascular disease and mortality in a high-risk population. Arterioscler. Thromb. Vasc. Biol. 36(2), 412–417 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Resnick, H. E. et al. Relationship of high and low ankle brachial index to all-cause and cardiovascular disease mortality: The Strong Heart Study. Circulation 109(6), 733–739 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Kennedy, M. et al. Risk factors for declining ankle-brachial index in men and women 65 years or older: The cardiovascular health study. Arch. Intern. Med. 165(16), 1896–1902 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Khawaja, F. J. et al. Association of novel risk factors with the ankle brachial index in African American and non-Hispanic white populations. Mayo Clin. Proc. 82, 709–716 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, D. et al. Sensitivity and specificity of the ankle—Brachial index to diagnose peripheral artery disease: A structured review. Vasc. Med. 15(5), 361–369 (2010).

    Article 

    Google Scholar
     

  • Doobay, A. V. & Anand, S. S. Sensitivity and specificity of the ankle–brachial index to predict future cardiovascular outcomes: A systematic review. Arterioscler. Thromb. Vasc. Biol. 25(7), 1463–1469 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Englund, E. K. et al. Multiparametric assessment of vascular function in peripheral artery disease: dynamic measurement of skeletal muscle perfusion, blood-oxygen-level dependent signal, and venous oxygen saturation. Circ. Cardiovasc. Imaging 8(4), e002673 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Tehan, P. E., Bray, A. & Chuter, V. H. Non-invasive vascular assessment in the foot with diabetes: Sensitivity and specificity of the ankle brachial index, toe brachial index and continuous wave Doppler for detecting peripheral arterial disease. J. Diabet. Complicat. 30(1), 155–160 (2016).

    Article 

    Google Scholar
     

  • Abouhamda, A., Alturkstani, M. & Jan, Y. Lower sensitivity of ankle-brachial index measurements among people suffering with diabetes-associated vascular disorders: A systematic review. SAGE Open Med. 7, 2050312119835038 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Potier, L. et al. Ankle-to-brachial ratio index underestimates the prevalence of peripheral occlusive disease in diabetic patients at high risk for arterial disease. Diabetes Care 32(4), e44–e44 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Álvaro-Afonso, F. J. et al. What is the clinical utility of the ankle-brachial index in patients with diabetic foot ulcers and radiographic arterial calcification?. Int. J. Low. Extrem. Wounds 14(4), 372–376 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Aboyans, V. et al. The association between elevated ankle systolic pressures and peripheral occlusive arterial disease in diabetic and nondiabetic subjects. J. Vasc. Surg. 48(5), 1197–1203 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Cisek, P. L. et al. Microcirculatory compensation to progressive atherosclerotic disease. Ann. Vasc. Surg. 11(1), 49–53 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kabbani, M. et al. Impact of diabetes and peripheral arterial occlusive disease on the functional microcirculation at the plantar foot. Plast. Reconstr. Surg. Global Open 1(7), e48 (2013).

    Article 

    Google Scholar
     

  • Rossi, M. et al. Acute effect of exercise-induced leg ischemia on cutaneous vasoreactivity in patients with stage II peripheral artery disease. Microvasc. Res. 64(1), 14–20 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Urbančič-Rovan, V. et al. Macro-and microcirculation in the lower extremities—possible relationship. Diabetes Res. Clin. Pract. 73(2), 166–173 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Larsen, R. G. et al. Impaired microvascular reactivity after eccentric muscle contractions is not restored by acute ingestion of antioxidants or dietary nitrate. Physiol. Rep. 7(13), e14162 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Cooke, J. P. & Losordo, D. W. Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ. Res. 116(9), 1561–1578 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meru, A. V. et al. Intermittent claudication: An overview. Atherosclerosis 187(2), 221–237 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muir, R. L. Peripheral arterial disease: Pathophysiology, risk factors, diagnosis, treatment, and prevention. J. Vasc. Nurs. 27(2), 26–30 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, J. B. et al. Imaging of small animal peripheral artery disease models: Recent advancements and translational potential. Int. J. Mol. Sci. 16(5), 11131–11177 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathew, R. C. & Kramer, C. M. Recent advances in magnetic resonance imaging for peripheral artery disease. Vasc. Med. 23(2), 143–152 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Versluis, B. et al. Magnetic resonance imaging in peripheral arterial disease: Reproducibility of the assessment of morphological and functional vascular status. Invest. Radiol. 46(1), 11–24 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, W.-C. et al. Skeletal muscle microvascular flow in progressive peripheral artery disease: Assessment with continuous arterial spin-labeling perfusion magnetic resonance imaging. J. Am. Coll. Cardiol. 53(25), 2372–2377 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Sah, B.-R. et al. CT-perfusion in peripheral arterial disease–Correlation with angiographic and hemodynamic parameters. PLoS ONE 14(9), e0223066 (2019).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Veit-Haibach, P. et al. CT perfusion in peripheral arterial disease—hemodynamic differences before and after revascularisation. Eur. Radiol. 31(8), 5507–5513 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Collins, R. et al. A systematic review of duplex ultrasound, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic, lower limb peripheral arterial disease. Health Technol. Assessment 11(20), iii–184 (2007).

    Article 

    Google Scholar
     

  • Lawall, H. et al. The diagnosis and treatment of peripheral arterial vascular disease. Dtsch. Arztebl. Int. 113(43), 729 (2016).

    PubMed 

    Google Scholar
     

  • Tanter, M. & Fink, M. Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(1), 102–119 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Bayat, M., Fatemi, M. & Alizad, A. Background removal and vessel filtering of noncontrast ultrasound images of microvasculature. IEEE Trans. Biomed. Eng. 66(3), 831–842 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ghavami, S. et al. Quantification of morphological features in non-contrast-enhanced ultrasound microvasculature imaging. IEEE Access 8, 18925–18937 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ternifi, R. et al. Quantitative biomarkers for cancer detection using contrast-free ultrasound high-definition microvessel imaging: Fractal dimension, murray’s deviation, bifurcation angle & spatial vascularity pattern. IEEE Trans. Med. Imaging 40(12), 3891–3900 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ma, K. F. et al. A systematic review of diagnostic techniques to determine tissue perfusion in patients with peripheral arterial disease. Expert Rev. Med. Devices 16(8), 697–710 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L.-L. et al. Utility of contrast-enhanced ultrasound for the assessment of skeletal muscle perfusion in diabetes mellitus: A meta-analysis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 25, 4535 (2019).

    CAS 

    Google Scholar
     

  • Lindner, J. R. et al. Limb stress-rest perfusion imaging with contrast ultrasound for the assessment of peripheral arterial disease severity. JACC Cardiovasc. Imaging 1(3), 343–350 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Duerschmied, D. et al. Contrast ultrasound perfusion imaging of lower extremities in peripheral arterial disease: A novel diagnostic method. Eur. Heart J. 27(3), 310–315 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Thomas, K. N. et al. Reliability of contrast-enhanced ultrasound for the assessment of muscle perfusion in health and peripheral arterial disease. Ultrasound Med. Biol. 41(1), 26–34 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Meneses, A. L. et al. Leg blood flow and skeletal muscle microvascular perfusion responses to submaximal exercise in peripheral arterial disease. Am. J. Physiol. Heart Circ. Physiol. 315(5), H1425–H1433 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amarteifio, E. et al. Dynamic contrast-enhanced ultrasound and transient arterial occlusion for quantification of arterial perfusion reserve in peripheral arterial disease. Eur. J. Radiol. 81(11), 3332–3338 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Isbell, D. C. et al. Calf muscle perfusion at peak exercise in peripheral arterial disease: Measurement by first-pass contrast-enhanced magnetic resonance imaging. J. Magn. Reson. Imaging 25(5), 1013–1020 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Met, R. et al. Diagnostic performance of computed tomography angiography in peripheral arterial disease: A systematic review and meta-analysis. JAMA 301(4), 415–424 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, X. X., Chu, G. H. & Yu, Y. Prospects of contrast-enhanced ultrasonography for the diagnosis of peripheral arterial disease: A meta-analysis. J. Ultrasound Med. 37(5), 1081–1090 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lopez, D. et al. Arterial spin labeling perfusion cardiovascular magnetic resonance of the calf in peripheral arterial disease: Cuff occlusion hyperemia vs exercise. J. Cardiovasc. Magn. Reson. 17(1), 1–9 (2015).

    Article 
    MathSciNet 

    Google Scholar
     

  • Sanada, H. et al. Vascular function in patients with lower extremity peripheral arterial disease: A comparison of functions in upper and lower extremities. Atherosclerosis 178(1), 179–185 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, P. et al. Noise equalization for ultrafast plane wave microvessel imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(11), 1776–1781 (2017).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Nayak, R., Fatemi, M. & Alizad, A. Adaptive background noise bias suppression in contrast-free ultrasound microvascular imaging. Phys. Med. Biol. 64(24), 245015 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • [ad_2]

    Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Check Also
    Close
    Back to top button