Health Care

The challenges and prospects of brain-based prediction of behaviour

[ad_1]

  • Sui, J., Jiang, R., Bustillo, J. & Calhoun, V. Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health: methods and promises. Biol. Psychiatry 88, 818–828 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeung, A. W. K., More, S., Wu, J. & Eickhoff, S. B. Reporting details of neuroimaging studies on individual traits prediction: a literature survey. NeuroImage 256, 119275 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cirillo, D. & Valencia, A. Big data analytics for personalized medicine. Curr. Opin. Biotechnol. 58, 161–167 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dadi, K. et al. Benchmarking functional connectome-based predictive models for resting-state fMRI. NeuroImage 192, 115–134 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Dhamala, E., Yeo, B. T. T. & Holmes, A. J. One size does not fit all: methodological considerations for brain-based predictive modelling in psychiatry. Biol. Psychiatry 93, 717–728 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Rosenberg, M. D. et al. A neuromarker of sustained attention from whole-brain functional connectivity. Nat. Neurosci. 19, 165–171 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, M. H., Smyser, C. D. & Shimony, J. S. Resting-state fMRI: a review of methods and clinical applications. Am. J. Neuroradiol. 34, 1866–1872 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferguson, M. A., Anderson, J. S. & Spreng, R. N. Fluid and flexible minds: intelligence reflects synchrony in the brain’s intrinsic network architecture. Netw. Neurosci. 1, 192–207 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. A neuromarker of individual general fluid intelligence from the white-matter functional connectome. Transl. Psychiatry 10, 147 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, S. et al. An information network flow approach for measuring functional connectivity and predicting behavior. Brain Behav. 9, e01346 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenberg, M. D. et al. Functional connectivity predicts changes in attention observed across minutes, days, and months. Proc. Natl Acad. Sci. USA 117, 3797–3807 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avery, E. W. et al. Distributed patterns of functional connectivity predict working memory performance in novel healthy and memory-impaired individuals. J. Cogn. Neurosci. 32, 241–255 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Pläschke, R. N. et al. Age differences in predicting working memory performance from network-based functional connectivity. Cortex 132, 441–459 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. Do intrinsic brain functional networks predict working memory from childhood to adulthood? Hum. Brain Mapp. 41, 4574–4586 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Girault, J. B. et al. White matter connectomes at birth accurately predict cognitive abilities at age 2. NeuroImage 192, 145–155 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, R. et al. Multimodal data revealed different neurobiological correlates of intelligence between males and females. Brain Imaging Behav. 14, 1979–1993 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasero, J., Sentis, A. I., Yeh, F. C. & Verstynen, T. Integrating across neuroimaging modalities boosts prediction accuracy of cognitive ability. PLoS Comput. Biol. 17, e1008347 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, L. et al. Grey matter volume in the executive attention system predict individual differences in effortful control in young adults. Brain Topogr. 32, 111–117 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kaufmann, T. et al. Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets. NeuroImage 147, 243–252 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Xiao, Y. et al. Predicting visual working memory with multimodal magnetic resonance imaging. Hum. Brain Mapp. 42, 1446–1462 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Scheinost, D. et al. Ten simple rules for predictive modeling of individual differences in neuroimaging. NeuroImage 193, 35–45 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Gabrieli, J. D. E., Ghosh, S. S. & Whitfield-Gabrieli, S. Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron 85, 11–26 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pervaiz, U., Vidaurre, D., Woolrich, M. W. & Smith, S. M. Optimising network modelling methods for fMRI. NeuroImage 221, 116604 (2020).

    Article 

    Google Scholar
     

  • Poldrak, R. A., Huckins, G. & Varoquax, G. Establishment of best practices for evidence for prediction: a review. J. Am. Med. Assoc. Psychiatry 77, 534–540 (2020).


    Google Scholar
     

  • Sripada, C. et al. Prediction of neurocognition in youth from resting state fMRI. Mol. Psychiatry 25, 3413–3421 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, T. et al. Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics. NeuroImage 206, 116276 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • He, L. et al. Functional connectome prediction of anxiety related to the COVID-19 pandemic. Am. J. Psychiatry 178, 530–540 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gao, S., Greene, A. S., Constable, R. T. & Scheinost, D. Combining multiple connectomes improves predictive modeling of phenotypic measures. NeuroImage 201, 116038 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L. & Breakspear, M. Time-resolved resting-state brain networks. Proc. Natl Acad. Sci. USA 111, 10341–10346 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bahg, G., Evans, D. G., Galdo, M. & Turner, B. M. Gaussian process linking functions for mind, brain, and behavior. Proc. Natl Acad. Sci. USA 117, 29398–29406 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mihalik, A. et al. Canonical correlation analysis and partial least squares for identifying brain–behaviour associations: a tutorial and a comparative study. Biol. Psychiatry 7, 1055–1067 (2022).


    Google Scholar
     

  • Gal, S., Tik, N., Bernstein-Eliav, M. & Tavor, I. Predicting individual traits from unperformed tasks. NeuroImage 249, 118920 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • He, T. et al. Meta-matching as a simple framework to translate phenotypic predictive models from big to small data. Nat. Neurosci. 25, 795–804 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takagi, Y., Hirayama, J. I. & Tanaka, S. C. State-unspecific patterns of whole-brain functional connectivity from resting and multiple task states predict stable individual traits. NeuroImage 201, 116036 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Burr, D. A. et al. Functional connectivity predicts the dispositional use of expressive suppression but not cognitive reappraisal. Brain Behav. 10, e01493 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, R. et al. Task-induced brain connectivity promotes the detection of individual differences in brain–behavior relationships. NeuroImage 207, 116370 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ooi, L. Q. R. et al. Comparison of individualized behavioral predictions across anatomical, diffusion and functional connectivity MRI. NeuroImage 263, 119636 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Dhamala, E., Jamison, K. W., Jaywant, A., Dennis, S. & Kuceyeski, A. Distinct functional and structural connections predict crystallised and fluid cognition in healthy adults. Hum. Brain Mapp. 42, 3102–3118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mansour, L. S., Tian, Y., Yeo, B. T. T., Cropley, V. & Zalesky, A. High-resolution connectomic fingerprints: mapping neural identity and behavior. NeuroImage 229, 117695 (2021).

    Article 

    Google Scholar
     

  • Pat, N. et al. Longitudinally stable, brain-based predictive models mediate the relationships between childhood cognition and socio-demographic, psychological and genetic factors. Hum. Brain Mapp. 43, 5520–5542 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurtz, G. M. & Donovan, J. J. Personality and job performance: the Big Five revisited. J. Appl. Psychol. 85, 869–879 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kane, M. J., Conway, A. R. A., Miura, T. K. & Colflesh, G. J. H. Working memory, attention control, and the n-back task: a question of construct validity. J. Exp. Psychol. 33, 615–622 (2007).


    Google Scholar
     

  • Sanchez-Cubillo, I. et al. Construct validity of the Trail Making Test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J. Int. Neuropsychol. Soc. 15, 438–450 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study. Nat. Commun. 13, 2217 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. A connectivity-based psychometric prediction framework for brain–behavior relationship studies. Cereb. Cortex 31, 3732–3751 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noble, S., Scheinost, D. & Constable, R. T. A decade of test–retest reliability of functional connectivity: a systematic review and meta-analysis. NeuroImage 203, 116157 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Elliott, M. L. et al. What is the test–retest reliability of common task-functional MRI measures? New empirical evidence and a meta-analysis. Psychol. Sci. 31, 792–806 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patriat, R. et al. The effect of resting condition on resting-state fMRI reliability and consistency: a comparison between resting with eyes open, closed, and fixated. NeuroImage 78, 463–473 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Birn, R. M. et al. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage 83, 550–558 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Bennett, C. M. & Miller, M. B. fMRI reliability: influences of task and experimental design. Cogn. Affect. Behav. Neurosci. 13, 690–702 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Cremers, H. R., Wager, T. D. & Yarkoni, T. The relation between statistical power and inference in fMRI. PLoS ONE 12, e0184923 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kharabian Masouleh, S., Eickhoff, S. B., Hoffstaedter, F. & Genon, S., Alzheimer’s Disease Neuroimaging Initiative. Empirical examination of the replicability of associations between brain structure and psychological variables. eLife 8, e43464 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genon, S., Eickhoff, S. B. & Kahrabian, S. Linking interindividual variability in brain structure to behaviour. Nat. Rev. Neurosci. 23, 307–318 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beaty, R. E. et al. Robust prediction of individual creative ability from brain functional connectivity. Proc. Natl Acad. Sci. USA 115, 1087–1092 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, P. et al. The functional connectome predicts feeling of stress on regular days and during the COVID-19 pandemic. Neurobiol. Stress 14, 100285 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, Z. et al. Connectome-based predictive modeling of creativity anxiety. NeuroImage 225, 117469 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Fong, A. H. C. et al. Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies. NeuroImage 188, 14–25 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, J. et al. Cross-cohort replicability and generalizability of connectivity-based psychometric prediction patterns. NeuroImage 262, 119569 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tervo-Clemmens, B. et al. Reply to: Multivariate BWAS can be replicable with moderate sample sizes. Nature 615, E8–E12 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenberg, M. D. & Finn, E. S. How to establish robust brain–behavior relationships without thousands of individuals. Nat. Neurosci. 25, 835–837 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spisak, T., Bingel, U. & Wager, T. Replicable multivariate BWAS with moderate sample sizes. Preprint at bioRxiv https://doi.org/10.1101/2022.06.22.497072 (2022).

  • Van Essen, D. C. et al. The WU-Minh Human Connectome Project: an overview. NeuroImage 80, 62–79 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Harms, M. P. et al. Extending the Human Connectome Project across ages: imaging protocols for the lifespan development and aging projects. NeuroImage 183, 972–984 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Chouldechova, A., Benavides-Prado, D., Fialko, O. & Vaithianathan, R. A case study of algorithm-assisted decision making in child maltreatment hotline screening decisions. Proc. Mach. Learn. Res. 81, 134–148 (2018).


    Google Scholar
     

  • Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate healthy disparities. Nat. Genet. 51, 584–591 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity. Sci. Adv. 8, eabj1812 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greene, A. S. et al. Brain-phenotype models fail for individuals who defy sample stereotypes. Nature 609, 109–118 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greene, A. S., Gao, S., Scheinost, D. & Constable, R. T. Task-induced brain state manipulation improves prediction of individual traits. Nat. Commun. 9, 2807 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nostro, A. D. et al. Predicting personality from network-based resting-state functional connectivity. Brain Struct. Funct. 223, 2699–2719 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, Y. & Zalesky, A. Machine learning prediction of cognition from functional connectivity: are feature weights reliable? NeuroImage 245, 118648 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Haufe, S. et al. On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage 87, 96–110 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. Relationship between prediction accuracy and feature importance reliability: an empirical and theoretical study. NeuroImage 274, 120115 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar
     

  • Yip, S. W., Kiluk, B. & Scheinost, D. Towards addiction prediction: an overview of cross-validated predictive modeling findings and considerations for future neuroimaging research. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 748–758 (2020).

    PubMed 

    Google Scholar
     

  • Jiang, R., Woo, C. W., Qi, S., Wu, J. & Sui, J. Interpreting brain biomarkers: challenges and solutions in interpreting machine learning-based predictive neuroimaging. IEEE Signal Process. Mag. 39, 107–118 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chormai, P. et al. Machine learning of large-scale multimodal brain imaging data reveals neural correlates of hand preference. NeuroImage 262, 119534 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005).

    Article 

    Google Scholar
     

  • Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model prediction. In Advances in Neural Information Processing Systems 30 (NIPS 2017) (eds Guyon, I. et al.) (Curran Associates, 2017).

  • Pat, N., Wang, Y., Bartonicek, A., Candia, J. & Stringaris, A. Explainable machine learning approach to predict and explain the relationship between task-based fMRI and individual differences in cognition. Cereb. Cortex 33, 2682–2703 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at arXiv https://doi.org/10.48550/arXiv.1312.6114 (2013).

  • Goodfellow, I. J. et al. Generative adversarial networks. Commun. ACM 63, 139–144 (2020).

    Article 

    Google Scholar
     

  • van den Oord, A., Kalchbrenner, N. & Kavukcuoglu, K. Pixel recurrent neural networks. In Proceedings of the 33rd International Conference on Machine Learning (eds Balcan, M. F. & Weinberger, K. Q.) 48 1747–1756 (Proceedings of Machine Learning Research, 2016).

  • Fried, D. et al. Speaker-follower models for vision-and-language navigation. In Advances in Neural Information Processing Systems 31 (NeurIPS 2018) (eds Bengio, S. et al.) (Curran Associates, 2018).

  • Rosenblatt, M. et al. Connectome-based machine learning models are vulnerable to subtle data manipulations. Patterns (in the press).

  • Finlayson, S. G. et al. Adversarial attacks on medical machine learning. Science 363, 1287–1289 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finlayson, S. G., Chung, H. W., Kohane, I. S. & Beam, A. L. Adversarial attacks against medical deep learning systems. Preprint at arXiv https://doi.org/10.48550/arXiv.1804.05296 (2019).

  • Dubois, J., Galdi, P., Han, Y., Paul, L. K. & Adolphs, R. Resting-state functional brain connectivity best predicts the personality dimension of openness to experience. Pers. Neurosci. 1, E6 (2018).


    Google Scholar
     

  • Jiang, R. et al. Connectome-based individualized prediction of temperament trait scores. NeuroImage 183, 366–374 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • [ad_2]

    Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Check Also
    Close
    Back to top button